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Fig. 2 Outcome of regression on data from Fig. 1, showing the regression coefficients (Point A),
their individual 95% confidence limits (outer dashed lines), the limit of the 95% joint confidence
region (blue ellipse), and two example joint null hypotheses (points B, C).

Fig. 3 Data (blue solid circles) from a comparison between an experimental field method and
a laboratory reference method for the determination of uranium in stream water (excluding
values above 100 ng ml�1). Each point is from a separate source of water. Here the laboratory
method is assumed to have the smaller variance and is treated as the independent variable. Data
(from AMC Datasets) can be found at http://www.rsc.org/images/Uranium_in_stream%
20water_tcm18-57750.txt.

Fig. 4 Outcome of regression on data from Fig. 3, showing the regression coefficients (central
point), their individual 95% confidence limits (outer red dashed lines), the limit of the joint 95%
confidence region (blue ellipse), and a joint null hypothesis H0: (a ¼ 0 and b ¼ 1) (black dashed
lines and point).
but we can calculate a joint distribution
for them. This oen paints a rather
different picture of the valid inferences
that can be drawn. This is best seen in
a diagram showing the limit of the joint
distribution as an ellipse.

Fig. 2 illustrates the effect of the
dependence on the outcome for the cali-
bration shown in Fig. 1. Point A in Fig. 2
shows the values of the estimated coeffi-
cients. Points B and C show example
reference pairs of values dening illus-
trative joint null hypotheses, that is,

H0: a ¼ aref and b ¼ bref.

Point B falls within both of the indi-
vidual 95% condence intervals, so the
regression coefficients (Point A) might
naively be taken as showing no signi-
cant difference from the reference values.
Crucially, however, point B falls outside
the ellipse dening the joint condence
region, and the joint null is therefore
properly rejected at 95% condence.
Point C, in contrast, falls outside the two
individual condence intervals, so might
be taken as signicantly different and
rejected on both counts. However, it is
clearly within the joint 95% condence
region and therefore the null hypothesis
is not rejected.

These examples serve as an illustra-
tion for interpreting joint condence
regions but, for calibration purposes,
an analyst would usually be interested
in testing only the single null hypoth-
esis that the intercept was zero, a ¼ 0. A
zero intercept is useful as it means that
the signal is proportion to the concen-
tration. In any event, the slope of the
graph is usually set at an arbitrary value.
In Fig. 2 we see that zero is comfortably
within the condence limits (�82.5,
118.9) for the separate intercept
estimate.

Comparison of two
procedures for bias

In this section we consider the compar-
ison between paired results from two
analytical procedures applied to
numerous different test materials.
Translational bias would be present if
a s 0, rotational bias if b s 1. At rst
sight it seems as though we should test
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the respective null hypotheses separately.
However, because of the correlation
between the coefficients we can validly
test only the joint outcome for inferring
bias (or its absence) between the analyt-
ical procedures. In such cases we can
formulate a joint null hypothesis,
namely,

H0: (a ¼ 0 and b ¼ 1).

Random variation aside, that is what
we would expect if there were no bias
at all.
Fig. 3 shows some results from
a comparison of a laboratory-based
reference method and a
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square error. This is a quadratic equation
in ~b with roots
By inserting any appropriate value of
~a, we obtain two real values of
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