UUÂãÁÄÖ±²¥

Phishing warning 01-May-2024
We are aware of phishing emails targeting speakers of events whose names appear on our events pages. If you are unsure if an email regarding event registration or accommodation has come from us please contact us and do not provide any credit card details or personal information.

Dense ionic fluids Faraday Discussion

8 - 10 July 2024, London, United Kingdom


Introduction

Welcome

Join us in London in July 2024 for this addition to our Faraday Discussion series. With over a century of history and more than 300 meetings, Faraday Discussions have been at the forefront of the physical sciences and many Discussions have become landmark meetings in their field. The unique format of the Faraday Discussions allows for in-depth discussions and opportunities to establish new collaborations.

This meeting is for established and early-career scientists, postgraduate students and industrial researchers working on various aspects of dense ionic fluids. It will provide an ideal forum for cross-fertilisation of ideas and understanding between the distinct but adjacent communities working with different classes of dense ionic fluids and their different applications.

On behalf of the organising committee, we look forward to welcoming you to London.

Tom Welton
Chair

Why attend?

Find out more about Faraday Discussions in the video and FAQ – see useful links on the right.
 
A unique conference format that prioritises discussion
At a Faraday Discussion, the primary research papers written by the speakers are distributed to all participants before the meeting – ensuring that most of the meeting is devoted to discussing the latest research.
 
This provides a genuinely collaborative environment, where discussion and debate are at the foreground. All delegates, not just speakers, are invited to make comments, ask questions, or present complementary or contradictory measurements and calculations.
 
An exciting programme of talks – and more
Take part in a well-balanced mix of talks, discussion, poster sessions and informal networking, delivered by our expert events team. You can explore the full programme in the downloadable files on the right – whether you’re attending in-person or online, every minute provides an opportunity.
 
The conference dinner, included in the registration fee, contains the Marlow Cup ceremony: a unique commemoration of past Faraday Discussion organisers that is sure to encourage further discussions over dinner.
 
In-depth discussion with leaders in the field
World-leading and established researchers connect with each other and early-career scientists and postgraduate students to discuss the latest research and drive science forwards. It’s a unique atmosphere – and challenging others to get to the heart of the problem is encouraged!
 
Your contributions, published and citable
A citable record of the discussion is published in the Faraday Discussions journal, alongside the research papers. Questions, comments and remarks become a valuable part of the published scientific conversation, and every delegate can make a major contribution.
 
Discover London
The Discussion will take place at Burlington House, Piccadilly, in the centre of London and its historic attractions. Step out to explore the capital city while you’re here – or stay a few extra days to explore the city further and the surrounding area.

Themes

The meeting will comprise the following four interrelated themes:

Structure and dynamics in dense ionic fluids
Dense ionic fluids known to be richly structured at the nanoscale, with features including short-range oscillations in cation and anion density, and solvophobic-driven assembly of nanostructures such as lamellar, sponge and bicontinuous phases. Nanostructure in pure ionic liquids has been well studied, however much less well understood is structure in ionic fluids with additional components e.g. neutral (polar or non-polar) solvent, or mixtures of ionic components, or oligomeric species. This is highly relevant for the understanding of many dense ionic fluids, including deep eutectic solvents, solvent-in-salt electrolytes, eutectic salt mixtures, and physiological mixtures of salts and osmolytes in water. Connected to this nanostructural complexity is strong variation in the dynamic properties of ionic fluids. Simulations have revealed that molecular and ionic species can experience many orders of magnitude difference in local relaxation times and thus diffusion coefficients are dramatically different for different species. Relaxation of structures in response to changes to electric field, mechanical stress, and other perturbations are important and not yet well charted. This session will focus on these new directions of structure and dynamics in dens ionic fluids, and the links between them.

Ionic fluids at equilibrium: thermodynamics, nanostructure, phase behaviour, activity
Dense ionic fluids are hard to describe thermodynamically, due to the complex nature of their equilibrium structure (nanostructure), difficulty in modelling free energy in dense Coulomb systems, and relative paucity of high quality experimental measurements of colligative/thermodynamic properties. Phase behaviour is often complex due to nanoscale
phase segregation, intermediate-range order, and glass formation. Multiple dynamic timescales in dense ionic fluids mean that many electrochemical techniques and dielectric spectroscopy remain challenging. Key challenges addressed in this session are the interpretation of activity coefficients (i.e. understanding non-ideality and excess free energy) in dense ionic fluids; the discussion of macroscopic or microscopic liquid-liquid phase segregation in dense ionic fluids; the concepts of ‘solvent’ and ‘ion’ in systems with long-lived ion-molecule coordination; eutectic behaviour and the definition of ‘deep eutectic solvents’. Points of discussion will include phase equilibria involving dense ionic liquids; activity coefficients in dense ionic fluids (including water activity for aqueous mixtures) and their molecular origin; nanostructure in dense ionic fluids including non-uniformity (nano-scale phase separation) and self-assembly.

Ionic fluids out of equilibrium: electrodeposition, dissolution, electron transfer, driving forces
The non-equilibrium behaviour of ionic fluid is crucial in many contexts, from electrochemical applications to energy harvesting, storage and conversion, or complex transport processes in bulk and confined colloidal or biological suspensions (see also Session 4). The response of dense ionic fluids to electric or magnetic fields, to mechanical perturbations or to concentration and temperature gradients is richer than that of dilute electrolytes and remains a great challenge on both the experimental and theoretical sides, in particular because transport processes are strongly coupled in these systems. Additional complexity arises from the reactivity of these fluids under electrochemical conditions, with electron transfers and dissolution/precipitation coupled to the transport of reactant and products. Addressing these issues at the interface between fundamental physics and chemistry would open the way to key progress in engineering applications.
Points of discussion will include how to describe collective and specific effects (beyond ideal and mean-field electrostatic theories) e.g. on the conductivity, rheology or diffusio- and thermo-osmotic/phoretic response of dense ionic fluids. We will also discuss how to characterize and understand the formation of the solid electrolyte interphase (SEI) on electrodes, which plays a crucial role in batteries. Electrodissolution results in high local metal ion concentrations exacerbated by high solution viscosity and variations in local pH can also bring about precipitation in the double layer. Diffusion of counterions to the electrode surface can also result in uncharged and insoluble compounds. Slow diffusion of ligands away from the electrode during electrodeposition can result in changes in local Lewis basicity resulting in speciation changes. Of particular interest is the relation between speciation and redox properties.

Interfaces and particles in dense ionic fluids: biological and colloidal systems spanning multiple lengthscales
Many functions and applications of dense ionic fluids involve their interfaces with particles; either colloidal or biological, and spanning scales from nanometres to micrometres. The perturbation of liquid structure and properties caused by the presence of the particle/interface will determine properties of the whole system, e.g. particle-particle interaction potentials, protein structure and interactions, oligomer and polymer structure. While this interplay is well understood in dilute electrolytes – for example the electrical double layer formed at charged colloid interfaces – it is less studied and understood for dense ionic fluids.
In this session we will open discussion of these topics with a wide scope: we hope to attract speakers covering inorganic and biological systems, multiple lengthscales, theory and experiment. Key challenges in the field include the role of solvation and liquid structure on protein interactions in halophilic environments; disjoining pressure between particles in multi-valent and asymmetric electrolytes; colloidal stability and colloidal crystallisation in dense ionic fluids.

Speakers
Abstract Submission

Oral abstracts

Oral abstract submission is now closed.
Submit an oral/paper abstract if you wish to be considered for an oral presentation and associated published paper. A full research paper containing new unpublished results always accompanies oral presentations at Faraday Discussions. The oral/paper abstract should outline current research in progress. Authors of the selected abstracts must then submit a full research paper with a significant amount of new, unpublished work, by 19 February 2024.

The research papers are reviewed upon submission and are sent to all delegates 4 weeks before the meeting so they can be read in advance. At the meeting the presenting author is allowed five minutes to highlight the main points of their paper, and the rest of the time is for discussion. The discussion is recorded and will be published alongside the research paper in the Faraday Discussion Volume. 

Poster abstracts

Poster abstract submission is now closed.
Posters are displayed throughout the meeting and a poster session is held on the first evening. Poster prize(s) will be awarded to the best poster(s) presented at the conference.

Additional information

All oral and poster abstracts will be reviewed by the committee. Authors will be notified of the outcome of the review process within about 6 weeks of the submission deadline. The abstracts should be no longer than one A4 page in portrait layout. Please ensure you provide the details of the presenting author and indicate whether you are submitting an abstract for oral or poster presentation.
Registration
In-person registration includes:
  • Attendance at all scientific sessions
  • Attendance at the poster session
  • Refreshments throughout the meeting and lunch on all three days
  • Attendance at the poster drinks reception on 8 July
  • Attendance at the conference dinner on 9 July
  • Access to all journal paper pdf “pre-prints” before the meeting
  • Access to recordings of all scientific sessions post-event
  • For full paying delegates, a copy of the Faraday Discussion journal volume, issued approximately 5 months after the meeting, containing all papers presented at the meeting and accompanying discussion comments. Student delegates may purchase a copy of the volume at less than half price, during the registration process or on site at the meeting.
Please note accommodation is not included in the registration fee.

All prices quoted do not include VAT, which is added during registration at the prevailing rate in the UK
 
Early bird Standard
UUÂãÁÄÖ±²¥ member £415+Vat £465+Vat
Non-member £530+Vat £580+Vat
Student UUÂãÁÄÖ±²¥ member £205+Vat £255+Vat
Student non-member £255+Vat £305+Vat
Accompanying person £125+Vat £125+Vat

Virtual registration includes:
  • ​Live access to all scientific sessions
  • Access to all journal paper pdf “pre-prints” before the meeting
  • Access to recordings of all scientific sessions post-event
All prices quoted do not include VAT, which is added during registration at the prevailing rate in the UK
 
Standard
UUÂãÁÄÖ±²¥ member £130+Vat
Non-member £155+Vat
Student UUÂãÁÄÖ±²¥ member £70+Vat
Student non-member £95+Vat

A copy of the Faraday Discussion journal volume containing papers presented at the Discussion (issued approximately 5 months after the meeting) is not included in the virtual registration fee. Delegates may purchase a copy of the volume at less than half price, during the registration process or on site at the meeting. 

UUÂãÁÄÖ±²¥ members and student UUÂãÁÄÖ±²¥ members

If you are a UUÂãÁÄÖ±²¥ of Chemistry member and wish to register for this meeting, please select the member option on the online registration page. You will need to enter your membership number.

Non-member and student non-members

For non-member registrants, affiliate membership of the UUÂãÁÄÖ±²¥ of Chemistry until the end of 2024 is available. The affiliate membership application will be processed and commence once the registrant has attended the event. 

Student delegates 

In order to encourage undergraduate or postgraduate students to attend the Discussion, a reduced conference fee is available for students. This fee applies to those undertaking a full-time course for a recognised degree or a diploma at a university or equivalent institution.

A copy of the Faraday Discussion journal volume containing papers presented at the Discussion (issued approximately 5 months after the meeting) is not included in the student registration fee. Students may purchase a copy of the volume at less than half price, during the registration process or on site at the meeting.

Accompanying person

If you would like to bring a guest to the conference, this can be done during the registration process. There will be an additional charge, which will include all lunches, refreshments and the conference dinner. The fee does not include attendance at any scientific sessions, journal paper pre-prints or the journal volume.

Accessibility

The UUÂãÁÄÖ±²¥ of Chemistry is keen to encourage and enable as many people as possible to attend our events, to benefit from the networking opportunities and the chance to hear talks from leaders in the field. If you would like to discuss accessibility, or have childcare, caring responsibilities or other care needs, please contact us to discuss your requirements so that we can enable your attendance. Please refer also to our Grants for carers fund; for more information please see the ‘bursaries’ section on this page.

Terms and Conditions for Events run by the UUÂãÁÄÖ±²¥ of Chemistry

Bursaries

Grants for carers

With our Grants for carers, you can apply for up to £1,200 per year to help you attend a chemistry-related meeting, conference or workshop or a professional development event. This money would be used to cover any additional costs you incur, paying for care that you usually provide.  Please visit the website for further information and eligibility criteria.

Accessibility grants

With our Accessibility grants, you can apply for up to £1,200 per year to help with the cost of specific support to attend a chemistry-related meeting, conference, workshop or professional development event. This support might be any form of equipment, service, or other personal expense associated with meeting your access needs.

Researcher development and travel grant

If you are an UUÂãÁÄÖ±²¥ member and you are one of the following:

  • a PhD student actively undertaking a PhD course in the chemical sciences;
  • a researcher in the chemical sciences (including post docs, research technicians and research assistants)
  • working in academia
  • industry or any sector
  • within 10 years of leaving full time education (at the time of the application deadline).
You can apply for up to £500 to support your participation in this event.

Please note it is not necessary to have confirmation of abstract acceptance before applying for a Researcher Development and Travel Grant and we encourage you to apply as early as possible.
 
Please see the website for up-to-date information on eligibility, how to apply and submission deadlines.
 
Researcher Development and Travel Grants can be applied for in addition to Grants for Carers and Assistance Grants.

Sponsorship & supporting organisations
There are opportunities available to become a Faraday Discussion sponsor and exhibitor, as well as poster session and abstract book advertising options. A sponsorship menu document is available to download from this page with more details and prices. Sponsorship Menu
Venue
The UUÂãÁÄÖ±²¥ of Chemistry

The UUÂãÁÄÖ±²¥ of Chemistry, Burlington House, Piccadilly, London, W1J 0BA, United Kingdom


The Burlington House (Royal Academy) courtyard is located on the north side of Piccadilly, directly across the street from Fortnum and Mason. The UUÂãÁÄÖ±²¥ of Chemistry is located on the right hand side of the Burlington House courtyard.

Travel

By underground: The nearest stations are Green Park or Piccadilly Circus; both are a 5-minute walk to the venue. If you use Green Park please leave via Piccadilly Northside and look for the Royal Academy entrance, turn left out of the station, you will see the red flags of Burlington House ahead of you.

By train: London Kings Cross, London Liverpool Street or London Victoria train stations are the most accessible and then require a short tube journey to the venue You can take either the Piccadilly or Victoria line to Green Park or Piccadilly tube stations and only the Victoria line to Green Park from Victoria station

By coach: National Express operates a comprehensive coach service to most parts of the country from Victoria Coach Station, 164 Buckingham Palace Road, Sw1W 9TP
National Express coaches: www.nationalexpress.com
Megabus low-cost coach tickets: http://uk.megabus.com

Useful links

Committee
Contact information
Search
 
 
Showing all upcoming events
Start Date
End Date
Location
Subject area
Event type

Advertisement
Spotlight


E-mail Enquiry
*
*
*
*